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1. Introduction

The formulation of lattice QCD proposed by Wilson long ago preserves many symmetries

of the continuum theory exactly [1]. An infamous exception are the chiral symmetries, and

although the symmetry-violating terms vanish proportionally to the lattice spacing (or its

square if the theory is Symanzik-improved [2, 3]), the presence of these terms complicates

the lattice theory considerably. In particular, the fact that the massive Wilson-Dirac

operator is not protected from arbitrarily small eigenvalues may lead to instabilities in

numerical simulations.
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Such instabilities were not observed, however, in recent simulations of the two-flavour

Wilson theory on large lattices, not even at the smallest quark masses considered [4 – 6]. It

is tempting to attribute the absence of instabilities in these simulations to the use of a new

simulation algorithm, but this explanation cannot be right, because the distribution of the

spectral gap of the lattice Dirac operator (and thus the probability to find exceptionally

small eigenvalues) is determined by the lattice action and the functional integral, and not

by the method used to evaluate the latter.

Our aim in this paper is to clarify the situation by calculating the distribution of the

gap on a set of lattices, using numerical simulations. In particular, we wish to determine,

as explicitly as possible, the range in parameter space, where the Wilson theory can be

simulated without running into instabilities.

2. Algorithmic stability and the spectral gap

In this section we introduce our notation and discuss the relevance of the distribution of

the spectral gap for the stability of lattice QCD simulations. For any unexplained notation

see ref. [3].

2.1 Lattice Dirac operator

The lattice theory is set up as usual on hypercubic lattices with spacing a. Periodic

boundary conditions are imposed on all fields and in all directions, except for the quark

fields, which are taken to be antiperiodic in time. Throughout this paper, we assume that

there is a doublet of sea quarks with equal mass, although many results are likely to remain

valid if the number of quark flavours is larger than two.

While the action of the gauge field will always be the Wilson plaquette action, we shall

consider various lattice Dirac operators Dm (the subscript indicates that Dm includes the

quark mass term). The Wilson-Dirac operator

Dm = Dw + m0, (2.1)

Dw =
1

2
{γµ (∇∗

µ + ∇µ) − a∇∗
µ∇µ} , (2.2)

is the one we are primarily interested in, as well as its O(a)-improved version [2, 3]. In

these equations, ∇µ and ∇∗
µ denote the gauge-covariant forward and backward difference

operators, and m0 the bare quark mass.

Rather than the Dirac operator itself, we prefer to consider the hermitian operator

Qm = γ5Dm (2.3)

in the following. The determinants of these two operators are the same, but the fact that

the spectrum of Qm is real simplifies the discussion considerably. On a finite lattice, and

for any specified gauge field, we then define the spectral gap

µ = min {|λ| | λ is an eigenvalue of Qm} . (2.4)
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Evidently, the gap is a well-defined function of the gauge field and so is the spectral

asymmetry

η =
1

2
{N+ − N−} , (2.5)

where N± are the numbers of positive and negative eigenvalues of Qm.

In formulations of lattice QCD that preserve chiral symmetry via the Ginsparg-Wilson

relation [7 – 11], the gap is bounded from below by the bare current-quark mass m and the

asymmetry vanishes if m > 0 (see ref. [12], for example). However, these properties are

not guaranteed in the Wilson theory, and it is possible, in the presence of some gauge-field

configurations, that the gap is much smaller than m and that the asymmetry assumes a

non-zero value.

2.2 Sources of instability

In the large-volume regime of QCD, and at large quark masses, the probability distribution

p(µ) of the gap typically looks like the one shown in the upper plot in figure 1. The subsets

of gauge fields, where µ is far below the central value of the distribution, occur with such a

small probability in this case that their contributions to the common physical observables

can be safely neglected. Numerical simulations, using a preconditioned Hybrid Monte

Carlo (HMC) algorithm [13], for example, will then normally run smoothly and produce a

representative sample of field configurations as expected.

When the quark mass decreases, the centre of the gap distribution moves towards

smaller values and eventually is no more than one or two standard deviations away from

the origin (lower plot in figure 1). At this point numerical simulations may run into

instabilities for the following reasons:

1. Integration instabilities. The HMC algorithm obtains the next field configuration by

integrating the appropriate molecular-dynamics equations in field space, followed by

an accept-reject step at the end of the integration. It is possible that the molecular-

dynamics trajectories pass through field configurations where the gap µ is exception-

0

0.1

0.2

p(µ)

0 5 10 15 20 25 30
µ [MeV]

0

0.1

0.2

Figure 1: Qualitative form of the normalized probability distribution p(µ) of the gap (full lines),

at two values of the quark mass (upper and lower plot). The normalized weighted distributions

proportional to p(µ)/µ2 are also shown (dotted lines).
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ally small. The numerical integration becomes unstable in this case and liable to

rounding errors. In particular, the reversibility of the integration is then no longer

guaranteed, which invalidates the algorithm.

2. Ergodicity. Along the molecular-dynamics trajectories, the spectral asymmetry η

tends to be preserved. Changes in the asymmetry are in fact excluded in the limit

where the integration step-size goes to zero. However, the sectors in field space,

in which the asymmetry does not vanish, may become statistically relevant in the

situation considered here. The HMC algorithm is then likely to give wrong results,

because it may get stuck, for a very long time, in any one of these sectors.

3. Sampling inefficiencies. Observables that are sensitive to the small eigenvalues of

the Dirac operator, such as the pion propagator, may be poorly sampled by the

simulation. The effect is illustrated by the dotted curves in figure 1, which represent

the distributions of the gap reweighted by the “observable” 1/µ2. Expectation values

of such quantities are difficult to compute reliably, since the subspace of fields where

µ is very small is only rarely visited in the course of the simulation.

Instabilities of this kind can lead to underestimated statistical errors and incorrect results,

and they may even suggest the presence of a phase transition when there is none. Since

the QCD functional integral remains well defined, also in this difficult regime, improved

simulation techniques may conceivably be developed, which do not suffer from any in-

stabilities. Whether this is worth the effort is not obvious, however, because the theory

may be strongly affected by lattice artefacts (resulting from a competition of mass and

discretization effects) in the critical range of parameters.

3. Numerical studies

In the presence of any given gauge field, the spectral gap of the Dirac operator can be

computed numerically, using a suitable iterative method (appendix A). Evidently, the

histograms of the values calculated in the course of a numerical simulation approximate

the gap distribution up to statistical errors. In this section, we report the results of such

numerical studies and show that the data are well described by a few simple empirical laws.

3.1 Simulation parameters

The simulations listed in table 1 are part of an ongoing study of two-flavour QCD in the

chiral regime [6]. Technically the project is based on the use of the Schwarz-preconditioned

HMC simulation algorithm introduced in ref. [4], which allows the theory to be simulated

in a range of lattices and quark masses that was, in practice, inaccessible so far.

Except for the last run in table 1, the unimproved Wilson theory was simulated, at

inverse bare coupling β and hopping parameter κ = (8+2am0)
−1. In run D1 the coefficient

csw of the Sheikholeslami-Wohlert improvement term [2, 3] was set to the value determined

by the ALPHA collaboration [14]. A number Ncfg of statistically decorrelated gauge-field

configurations was generated in each case and later used for the calculation of the gap

distributions.
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Run Lattice β csw κ Ncfg amπ

A1 32 × 243 5.6 0 0.15750 64 0.2744(21)

A2 0.15800 109 0.1969(16)

A3 0.15825 100 0.1554(31)

A4 0.15835 100 0.1204(44)

B1 64 × 323 5.8 0 0.15410 100 0.1965(8)

B2 0.15440 101 0.1481(11)

C1 64 × 243 5.6 0 0.15800 116 0.1986(10)

D1 48 × 243 5.3 1.90952 0.13550 104 0.3265(11)

Table 1: Simulation runs included in this study.

Details of the simulations, the computation of the quark masses and other physical

quantities will be given in a forthcoming publication [6]. Based on calculations of the

Sommer reference scale r0 [15], the lattice spacing in the Wilson theory is estimated to be

about 0.08 and 0.06 fm at β = 5.6 and 5.8, respectively, while it is roughly 0.09 fm in the

improved theory at β = 5.3. In physical units the spatial sizes of the lattices in table 1 are

thus close to 2 fm in all cases.

As usual the conversion from lattice to physical units is ambiguous, but in this paper

the latter serve for the purpose of illustration only. The pion masses quoted in the last

column of table 1, for example, cover a range from 676 to about 294 MeV in the case of

the runs A1–A4.

3.2 Mass-dependence of the gap distribution

The calculated distributions of the gap in the Wilson theory at β = 5.6 are plotted in

figure 2. A characteristic feature of these distributions is that their shape does not show

a strong dependence on the quark mass. Basically they are shifted to smaller values when

the quark mass decreases. All these distributions are clearly separated from the origin,

although the smallest mass may be quite close to where the unstable regime begins.

The distributions are roughly symmetric about their median (dotted lines in figure 2),

which is practically also the point where they assume their maximal value. As shown in

figure 3, the median scales approximately linearly with the current-quark mass. A small

but significant effect is seen at the lighter quark masses, where the median is pushed to

slightly larger values with respect to the straight scaling curve.

On the big lattices at β = 5.8, the situation is essentially the same, although here only

two simulations have been completed so far (see figure 4). In particular, the quark masses

in these two runs are in a range where a nearly perfect scaling of the median as a function

of the quark mass is again observed.

3.3 Statistical fluctuations of the gap

An important qualitative result of our empirical studies is that the fluctuations of the

gap become smaller when the four-dimensional volume V of the lattice increases. The

simulation C1, for example, was performed at exactly the same coupling and quark mass
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Figure 2: Normalized histograms of the spectral gap µ, as obtained in the runs A1–A4 and C1.

The bin size is 1.5MeV and the dotted vertical lines indicate the position of the median µ̄ of the

distributions.

0 20 40 60
m [MeV]

0

20

40

60

µ [MeV]

Figure 3: Median µ̄ of the gap distribution on the 32 × 243 lattice (runs A1–A4) as a function of

the bare current-quark mass m. The straight line from the point at the largest mass to the origin

is drawn to guide the eye. Statistical errors are negligibly small on the scale of this plot.

as the simulation A2, but on a larger lattice. As can be seen from figure 2, the width of

the gap distribution obtained in run C1 is visibly reduced with respect to the one obtained

in run A2.

A simple heuristic argumentation that may explain this effect goes as follows. Let U be

a given lattice gauge field, µ the lowest eigenvalue of |Qm| and ψ the associated eigenvector

normalized to unity. Consider a small random fluctuation U + δU of the gauge field. To
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Figure 4: Gap distributions and mass dependence of the median µ̄ on the 64 × 323 lattices (runs

B1 and B2). The bin size is the same as in figure 2.

first order, the change δµ in the gap is then given by

δµ = a4
∑

x

ψ(x)† [δQmψ] (x). (3.1)

At each point x, there are eight contributions to this sum, which are proportional to the

random variation δU of the gauge field on the links attached there. Now if ψ extends over

the whole lattice, i.e. if ψ it is not a localized mode, the size of these terms is proportional

to a3/V . On average this implies 〈δµ〉 = 0 and 〈(δµ)2〉 ∝ a2/V .

While this kind of reasoning is extremely superficial, the width σ of the numerically

determined gap distributions appears to scale in the suggested way (see figure 5).1 An

interesting special case is that of the distributions obtained in the runs A2 and C1, where,

as already mentioned, all parameters were the same except for the lattice volumes. The

scaled widths σ
√

V /a, however, agree very well with each other. The approximate scaling

law

σ ' a√
V

(3.2)

is actually consistent with all the data shown in figure 5.

1The standard deviation of µ is subject to potentially large statistical uncertainties, because the tails

of the gap distributions are poorly sampled. We therefore define the width of the distributions through

σ = 1

2
(v − u), where [u, v] is the smallest range in µ, which contains more than 68.3% of the data.
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0.6

0.8

1

1.2

1.4

1.6

1.8

σ√ V /a

Figure 5: Width σ of the gap distributions, given in units of a/
√

V , as obtained in runs A1–D1.

Note that the combination σ
√

V /a is dimensionless and can be computed directly from the lattice

data, without intermediate conversion to physical units. The statistical errors were determined

using the bootstrap method.

Somewhat surprisingly, the spectral gap thus seems to behave thermodynamically, like

a free-energy density for example, with probability distribution

p(µ) ∝ exp

{

− V

2a2
(µ − 〈µ〉)2

}

. (3.3)

The fact that σ is proportional to the lattice spacing suggests, on the other hand, that

the observed widths result from short-distance fluctuations of the gauge field. These fluc-

tuations scale more slowly with the volume than those expected in lattice theories that

preserve chiral symmetry, where the eigenvalue distributions are universally computable,

using chiral perturbation theory or random matrix theory.

4. Spectral gap in infinite volume

Analytical calculations of the gap distribution would evidently be very welcome at this

point, but since chiral symmetry is violated in the Wilson theory, it is unclear how such

calculations would proceed. The spectral density of the Dirac operator in infinite volume is

somewhat more accessible and provides a useful reference for the situation on the lattices

that can be simulated.

4.1 Spectral density

Let α1, α2, . . . be the eigenvalues of Q2
m, ordered in ascending order and counting multi-

plicities. In the following we will be interested in the spectral density

ρ(α) = lim
V →∞

1

V

∑

k≥1

〈δ(α − αk)〉 (4.1)

in infinite volume. It is, incidentally, possible to prove rigorously that the thermodynamic

limit (4.1) exists, using a general argument based on a decomposition of the lattice into

large blocks [16].
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√α [MeV]

0

0.01

0.02

0.03

0.04

m

Figure 6: Number of eigenvalues per bin and fm4 at the low end of the spectral density in the

continuum theory [cf. eq. (4.2)]. In this plot, m = 15MeV and Σ = (250 MeV)3 was assumed.

In the continuum theory, or if chiral symmetry is preserved by the lattice theory,

the spectral density vanishes at α < m2. Moreover, for slightly larger values of α, the

Banks-Casher relation [17] implies the asymptotic form

ρ(α) =
α>m2

Σ

π
√

α − m2
+ O(1), (4.2)

where Σ denotes the quark condensate. The spectral density thus has a well-defined thresh-

old at α = m2 in these cases (see figure 6).

In the following a working hypothesis is that there is a similar threshold ᾱ > 0 in the

Wilson theory or its O(a)-improved version (whichever is considered). We shall not need

to know the shape of the spectral density in the vicinity of the threshold, but it must be

guaranteed that ρ(α) vanishes if α < ᾱ and that the density is non-zero at or immediately

above ᾱ. It is important to understand that ᾱ is the point where the dense spectrum

begins, while it is perfectly possible that the Wilson-Dirac operator in finite volume has

eigenvalues significantly smaller than
√

ᾱ. Any part of the spectrum with less than O(V )

modes per energy bin is in fact suppressed by the factor 1/V in the limit (4.1).

4.2 Adding valence quarks

To be able to relate the spectral density to correlation functions of local fields, we will

need to consider partially quenched QCD, where 2N valence quarks are added to the

theory [18, 19]. The fermion action then becomes

SF = a4
∑

x

{

2N+2
∑

r=1

ψr(x)Dmψr(x) +
N

∑

k=1

|Dmφk(x)|2
}

, (4.3)

where ψr, ψr are the quark fields (2 sea quarks plus 2N valence quarks) and φk the pseudo-

fermion fields that are required to cancel the valence-quark determinants. This defines a

well-behaved euclidean field theory, whose renormalization can be expected to follow the

– 9 –
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usual rules. In particular, the obvious U(2N + 2)×U(N) flavour symmetry and some less

obvious graded symmetries restrict the possible counterterms to the naively expected ones.

We now also introduce the bare scalar and pseudo-scalar densities

Srs = ψrψs, Prs = ψrγ5ψs. (4.4)

These fields renormalize in the standard manner, i.e. for unequal flavours r, s, the renor-

malized operators are ZSSrs and ZPPrs, where the renormalization constants ZS and ZP

are flavour-independent and can be taken to be the same as the ones in the theory without

valence quarks.

4.3 Resolvent and moments of the spectral density

The resolvent

R(z) =

∫ ∞

ᾱ
dα

ρ(α)

α2(z − α)
, (4.5)

is an analytic function of z with a cut along the real axis from z = ᾱ to some value

proportional to 1/a2. For later convenience, a factor α−2 is included in the integral to

improve its convergence at large eigenvalues. Evidently, the spectral density is proportional

to the discontinuity across the cut, and so can be uniquely recovered from the resolvent if

the latter is known [20, 21].

For |z| < ᾱ, the resolvent may be expanded in a convergent power series,

R(z) =

∞
∑

k=0

Mkz
k, Mk = −

∫ ∞

ᾱ
dα

ρ(α)

αk+3
, (4.6)

with coefficients Mk that can be written as

Mk = a4n−4
∑

x1,...,xn−1

〈P12(x1)P23(x2) . . . Pn1(0)〉 , n = 2k + 6. (4.7)

This formula assumes that there are at least n quarks, but since each moment Mk may be

considered separately, a sufficient number of valence quarks can always be added to the

theory.

4.4 Renormalization

Equations (4.5)–(4.7) connect the spectral density to the basic field-theoretic correlation

functions whose renormalization properties are well understood. The suggestion is then

that the moments Mk get renormalized through multiplication by the factor (ZP)n. Since

the sum over the coordinates x1, . . . , xn−1 in eq. (4.7) includes the short-distance regions,

it is, however, not totally obvious that the moments thus renormalized will indeed have a

well-defined continuum limit.

In the continuum theory, and when inserted in correlation functions, the product

P12(x1)P23(x2), for example, has a short-distance expansion

P12(x1)P23(x2) ∼
x1→x2

C(x1 − x2)S13(x2) + · · · , (4.8)

– 10 –
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where the Wilson coefficient C(x) diverges like |x|−3 (up to logarithms). This singularity

is integrable and does not give rise to any additional ultraviolet divergencies. As it turns

out, all short-distance singularities of the correlation functions in eq. (4.7) are in fact

integrable.2 The ultraviolet divergencies of the moments are thus completely cancelled by

the renormalization factor (ZP)n and by the usual renormalization of the gauge coupling

and the quark mass.

Recalling the expansion (4.6) of the resolvent R(z) and its relation to the spectral

density, it now follows that

ρR(α) = Z2
Pρ(Z2

Pα) (4.9)

has a universal continuum limit (once a particular renormalization condition for the pseudo-

scalar density is adopted). The same must then also apply to the renormalized threshold

ᾱR = Z−2
P ᾱ, (4.10)

since the threshold is a property of the spectral density.

Without proof we mention in passing that the improved renormalized density in the

O(a)-improved theory is again given by eq. (4.9), provided ZP is replaced by

ZP
1 + bPamq

1 + bPPamq
, (4.11)

where bP and bPP are improvement coefficients and mq the additively renormalized bare

quark mass (the notation is as in ref. [3]). The correction proportional to bPP in this

expression is in fact all that is needed to cancel the terms of order a that arise from the

integrations over the short-distance singularities of the correlation function on the right of

eq. (4.7).

4.5 Relation to the current-quark mass

The bare current-quark mass m is usually determined through the vacuum-to-pion matrix

elements of the isovector axial current and density. From the renormalization properties

of the matrix elements it then follows that the renormalized quark mass is given by

mR = ZAZ−1
P m, (4.12)

where ZA denotes the axial-current renormalization constant.

Once a definite renormalization condition for the isovector axial density is adopted,

the threshold ᾱR and the quark mass mR become physical quantities. In particular, in the

continuum limit we have √
ᾱR

mR
= 1, (4.13)

not only when the limit is reached from a lattice theory that preserves chiral symmetry,

because this ratio is dimensionless, unambiguously normalized and therefore independent

2When all coordinates x1, . . . , xn−1 are scaled to zero, the operator product reduces to a coefficient

function times the unit operator. The degree of divergence of the integral is 4 − n in this case, and

convergence is thus guaranteed since n ≥ 6.
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Run ZA µ̄/m µ̄ − ZAm [MeV] 〈∆〉 [MeV]

A1 0.77(2)a 0.76(1) −0.5(5) 2.8(1)

A2 0.75(1) −0.6(4) 3.2(1)

A3 0.80(3) 0.6(5) 3.5(1)

A4 0.85(3) 1.1(4) 3.9(1)

B1 0.78(2)a 0.77(1) −0.3(3) 1.91(6)

B2 0.79(1) −0.2(3) 2.19(6)

C1 0.77(2)a 0.72(1) −1.7(3) 2.18(7)

D1 0.75(1)b 0.68(1) −5.4(5) 2.2(1)
aRI-MOM method [22].
bSchrödinger functional chiral Ward identity [23]

Table 2: Comparison of the median µ̄ with ZAm.

of the regularization. In terms of the bare quantities this implies
√

ᾱ = ZAm, up to

corrections of O(a) and independently of the normalization convention for the renormalized

axial density [the renormalization constant ZP cancels in the ratio (4.13)].

As already mentioned, the spectral gap in finite volume may not be related in any

simple way to the threshold of the spectral density in the thermodynamic limit. It is

nevertheless instructive to compare the median µ̄ of the gap distributions discussed in

section 3 with the threshold ZAm.

The numerically computed values of µ̄/m quoted in table 2 actually agree quite well

with the available estimates of ZA. There are, however, significant differences in the last

two rows of the table (runs C1 and D1), which underlines the fact that there is currently no

solid theoretical understanding of the gap distributions in finite volume. On the other hand,

the absolute deviation of the median from the threshold is, in most cases, smaller than the

average splitting 〈∆〉 of the first four eigenvalues of |Qm| (see table 2; the figures quoted in

the fourth column do not include the error on ZA). In particular, the data are consistent

with the working hypothesis on which our argumentation relied (cf. subsection 4.1).

5. Conclusions

As explained in section 2, numerical simulations of the Wilson theory can be expected to be

stable if the distribution of the spectral gap of the lattice Dirac operator is well separated

from the origin. The range of stability may be defined through the inequality µ̄ ≥ 3σ, for

example, where, as before, µ̄ and σ denote the median and width of the distribution. Using

the empirical relations µ̄ ' Zm and σ ' a/
√

V , this bound becomes m ≥ 3a/Z
√

V , which

shows that the accessible range of quark masses depends on both the lattice spacing and

the lattice size.

Another form of the stability bound is obtained by multiplication with the ratio B =

m2
π/2m, which is known to be practically independent of the quark mass [5, 6]. For lattices

of size 2L × L3, this leads to the inequality

mπL ≥
√

3
√

2aB/Z. (5.1)
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In particular, from our numerical studies of the (unimproved) Wilson theory, we deduce

the stability bounds

mπL ≥
{

2.8 at a = 0.08 fm,

2.3 at a = 0.06 fm,
(5.2)

where the mass dependence of B and Z was neglected for simplicity. Note that the pion

mass in these formulae is the one in infinite volume, and not the possibly much larger mass

computed on a lattice of size L.

It follows from these results that the range of stability includes all lattices where, say,

a ≤ 0.1 fm, L ≥ 2 fm and mπL ≥ 3. Simulations of the Wilson theory on such lattices,

using the known simulation algorithms, are thus expected to be safe from the problems

mentioned in section 2. The O(a)-improved theory is likely to behave in the same way, but

so far this has only been checked on a single lattice with spacing a = 0.09 fm. If the median

and width of the gap distribution are assumed to scale as in the unimproved theory, the

stability bound deduced from the simulation of this lattice is mπL ≥ 3.2. Extensive studies

of the improved theory will evidently be required to confirm this result, which is very much

in line with the bounds (5.2).
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A. Chebyshev accelerated subspace iteration

On a finite lattice, the few lowest eigenvalues of A = Q2
m can be computed numerically by

minimizing the associated Ritz functional, for example [24, 25]. This method is relatively

tolerant of rounding errors, which is an important advantage on computers that do not

support double-precision arithmetic. Otherwise there is a choice of algorithms that can

be significantly faster. Subspace iteration with Chebyshev acceleration and eigenvector

locking is one of them, and it is our aim, in the following paragraphs, to describe this

method in some detail (see ref. [26], for example).

A.1 Power method

A tight lower bound on the largest eigenvalue of A can be obtained by repeatedly applying

the operator to a random quark field. Starting from some arbitrary field ψ with unit norm,

the recursion

χ = Aψ, ψ = χ/‖χ‖, (A.1)

systematically enhances the upper spectral components of the field. The norm ‖χ‖ then

provides an increasingly accurate estimate of the largest eigenvalue. In practice 20 itera-

tions or so are usually sufficient for an accuracy better than 5%.
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Figure 7: Plot of the Chebyshev polynomial of order 12, showing the bounded oscillatory behaviour

in the interval [−1, 1] and the rapid increase of the polynomial away from this range.

When A is replaced by the shifted operator c − A, where c > 1
2
‖A‖ is some fixed

number, the power iteration converges to c minus the lowest eigenvalue of A. The latter

can thus be calculated in this way. However, since the low eigenvalues of A are typically

orders of magnitude smaller than c, accurate results are obtained only after a very large

number of iterations.

The power method is therefore not recommended for the computation of the low eigen-

values of A, unless it is combined with an acceleration technique. In particular, the shifted

operator can be replaced by a Chebyshev polynomial and the iteration may be extended

to a subspace of quark fields. Both of these modifications lead to significantly improved

convergence rates.

A.2 Chebyshev polynomials

For |z| ≤ 1 the Chebyshev polynomials T0(z), T1(z), . . . are defined by

Tk(z) = cos(kθ), z = cos θ. (A.2)

They oscillate between −1 and +1 in this range and rapidly increase or decrease to ±∞
when |z| > 1, depending on whether k is even or odd (see figure 7). Through the linear

transformation

z =
2x − v − u

v − u
, (A.3)

the polynomials can be made to oscillate in an arbitrary interval x ∈ [u, v] instead of the

standard range [−1, 1].

We may now replace x by A and choose [u, v] to contain the unwanted part of the

spectrum of A. The other part is then strongly enhanced when the polynomial is applied

to a given quark field (see figure 8). Since the spectrum of the operator is not known

beforehand, the interval bounds and the degree of the polynomial must be chosen adaptively

in the course of the power iteration.
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Figure 8: Plot of the Chebyshev polynomial of order 50, scaled to the interval [u, v] = [0.1, 49]. If

the spectrum of A is contained in this range except for the few lowest eigenvalues (filled circles),

the application of the polynomial to a given quark field enhances the field components along the

subspace spanned by these modes.

A simple mathematical fact that will be used in this context is summarized by

Lemma 1. For any given even degree k, and real numbers x, v, γ satisfying x<v and γ>1,

there exists a unique value of the interval bound u such that x < u < v and Tk(z) = γ

[where z is as in eq. (A.3)].

Proof. Since γ is larger than 1, there is one and only one ω such that

γ = cosh ω, ω > 0. (A.4)

The inequality x < u, on the other hand, implies z < −1 and thus

Tk(z) = cosh(kν), z = − cosh ν, (A.5)

for some ν > 0. We then conclude that the equation Tk(z) = γ has a unique solution

(respecting the specified constraints), which is given by ν = ω/k.

Having computed z as a function of k and γ, the interval bound

u = x + (v − x) tanh2
( ω

2k

)

(A.6)

is obtained from eq. (A.3). This shows that u is uniquely calculable, and it is now also

easy to verify that the expression (A.6) has all the required properties.

A.3 Chebyshev accelerated subspace iteration

The algorithm described in this subsection computes increasingly accurate approximations

to the n lowest eigenvalues of A and the associated eigenvectors. It operates on a d-

dimensional subspace of quark fields, where d is usually taken to be quite a bit larger

than n.

The computation proceeds iteratively, starting from a random set of orthonormal quark

fields ψ1, . . . , ψd. In each cycle of the iteration, the fields are updated one by one so that
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at the end of the cycle the whole basis of fields is replaced by a new one. More precisely,

a cycle consists of the following four steps:

1. Choose a Chebyshev polynomial Tk(z) with even degree and an appropriate spectral

range [u, v], taking the current estimates α1, . . . , αd of the eigenvalues as input.

2. Update the basis vectors ψi, i = 1, . . . , d, one after another through

χ = Tk(z)ψi, z =
2A − v − u

v − u
, (A.7)

φ = χ −
i−1
∑

j=1

(ψj , χ)ψj , (A.8)

ψi = φ/‖φ‖. (A.9)

The second and third equations here simply implement the modified Gram-Schmidt

orthogonalization process. In particular, the new basis is guaranteed to be orthonor-

mal.

3. Rotate the fields among themselves so as to diagonalize the operator A in the subspace

spanned by them, i.e. so that

(ψi, Aψj) = δijαi for all i, j = 1, . . . d, (A.10)

α1 ≤ α2 ≤ . . . ≤ αd, (A.11)

after the transformation.

4. Stop the algorithm if the approximate eigenvalues α1, . . . , αn and the associated eigen-

vectors satisfy the chosen convergence criterion.

This description is somewhat schematic and needs to be made more precise. It may

not be obvious, for example, how to choose the polynomial in the first step, and there are

various stopping criteria that may be applied.

A.4 Choice of the Chebyshev polynomial

Ideally the interval [u, v] should contain the spectrum of A except for the d lowest eigen-

values. In particular, the upper limit v should be set to a value slightly larger than ‖A‖.
If this number is not already known, it may be calculated at the beginning of the subspace

iteration using the ordinary power method.

To fix the lower bound u of the spectral interval and the degree k of the polynomial,

a reasonable requirement is that

Tk(z)|x=α1
= γ2, Tk(z)|x=αd

= γ, (A.12)

where γ > 1 is the desired enhancement factor for the low modes (see figure 8). In practice

γ = 3 appears to be a sensible choice, but trying other values of γ may be worth while.
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Recalling lemma 1, it is clear that the conditions (A.12) determine both u and k.

Explicitly, if we define ω and ω̃ through

cosh ω = γ, cosh ω̃ = γ2, (A.13)

the conditions become

u = αd + (v − αd) tanh2
( ω

2k

)

, (A.14)

αd + (v − αd) tanh2
( ω

2k

)

= α1 + (v − α1) tanh2
( ω̃

2k

)

. (A.15)

Normally k is such that 2k À ω̃, and the expansion at large k of eq. (A.15) then leads to

k =
1

2

{

(v − α1) ω̃2 − (v − αd)ω2

αd − α1

}1/2

, (A.16)

while u is determined by eq. (A.14). Evidently k should be rounded to the closest even

integer, and one may also wish to impose lower and upper limits on k at this point.

A.5 Stopping criterion

An upper bound on the deviation of the calculated eigenvalues αi from the exact eigenvalues

of A may be obtained by computing the residues

ρi = (A − αi)ψi (i = 1, . . . , n) (A.17)

and the maximal eigenvalue ε2 of the n × n residual matrix

Rij = (ρi, ρj). (A.18)

A well-known lemma then asserts that there are n orthonormal eigenvectors of A with

eigenvalues α̂i such that |αi − α̂i| ≤ ε for all i = 1, . . . , n.

This convergence criterion is safe but can be inefficient if the set {α1, . . . , αn} of ap-

proximate eigenvalues divides into well separated subsets of one or more eigenvalues. The

error bounds obtained from the residual matrices associated to each subset of eigenvalues

are then often quite a bit smaller than the bound obtained from the total residual matrix.

Provided the subsets are indeed separated from one another, by a margin larger than the

combined errors, these tighter bounds are completely safe too.

A.6 Eigenvector locking

A fairly obvious property of the subspace iteration is that the lower eigenvalues converge

faster than the higher ones. The algorithm can thus be accelerated somewhat by locking

the subsets of eigenvalues and eigenvectors that have already converged. Locking means

that these eigenvectors are not updated in the second step of each subspace iteration cycle

and that, in the third step, the operator A is diagonalized in the complementary subspace

only.

Another small acceleration is achieved by saving the last few eigenvectors, say

ψd−r+1, . . . , ψd, to some auxiliary fields before they are updated in the second step. In

the third step the saved fields may then be included in the Ritz diagonalization, i.e. A is

diagonalized in a subspace of dimension d + r, but only the first d eigenvectors are kept

after the diagonalization.
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A.7 Rounding errors

In order to avoid large rounding errors when the Chebyshev polynomials are applied to the

quark fields, the Clenshaw recursion should be used [27]. Let ψ be a given quark field and

let us define

χj = Tj(z)ψ, z =
2A − v − a

v − u
. (A.19)

The computation then proceeds recursively according to

χ0 = ψ, χ1 = zψ, (A.20)

χj+1 = 2zχj − χj−1, j = 1, 2, . . . , (A.21)

until the desired degree k is reached.

The use of 32-bit arithmetic in the subspace iteration does not lead to uncontrolled

rounding errors as long as the degree k of the Chebyshev polynomial is not too large.

In general the significance loss in the Clenshaw recursion grows proportionally to k, and

degrees below 100 or 200 may therefore be safe. On large lattices, however, the lowest

eigenvalues of A tend to be closely spaced and many orders of magnitude smaller than the

maximal eigenvalue. Polynomials with significantly larger degrees will be required under

these conditions and the use of double-precision arithmetic then becomes indispensable.
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